If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+120x=0
a = 4; b = 120; c = 0;
Δ = b2-4ac
Δ = 1202-4·4·0
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-120}{2*4}=\frac{-240}{8} =-30 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+120}{2*4}=\frac{0}{8} =0 $
| 9x+12-0=65 | | 5x=167 | | 69-y=244 | | 9+4a=a | | 7j+2j-5j-4j+4j=12 | | 4(x+1)^2-5=27 | | g/6+4=5 | | 28=-u+191 | | 4u(u-3)+8(2u-3)=4 | | 4x-3(0)=-3 | | 90x+90x=180 | | 90x+90=180 | | 278=-v+82 | | 7e-3=11 | | 6(r+6)=−18 | | X=-5.4x-3-2(x+5) | | 51-w=192 | | 12.5=3.5-5x | | -3+2x-7=5-3x | | 4(-0.75+0.75y)-3y=-3 | | 6z=4.5 | | 18.8=8+1.8(x-8) | | 71x-1+x+20x=180 | | X+20x63=90 | | 180=(15x-3)+63 | | 5x*2=4x-14 | | 10m+9+-2m=27 | | 5xx2=4x-24 | | 2x^2-6x+-5=0 | | u={1,3,6,9} | | 70x+20x+1=180 | | ∠A=5x−5∘∠B=3x+13 |